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Abstract. Direct CP -violating effects in the neutral kaon system result in violations of certain Bell-like
inequalities. The new experimental results on the determination of the phenomenological parameter ε′

allow to dismiss a large class of “hidden variable” alternatives to quantum mechanics.

1 Introduction

The entangled character of neutral kaon pairs produced
at φ-factories offers the possibility of meaningful tests of
Bell’s locality [1, 2] in a broad class of hidden-variable
extensions of ordinary quantum mechanics. This may be
achieved in essentially two different ways, either by ex-
ploiting the correlations at different times involving
strangeness oscillations, [3-9] or by identifying different
kaon states via their decay products, with or without us-
ing regeneration methods.[10-14]

A different, more general point of view is however pos-
sible; as suggested in [15], a clean confirmation of quantum
mechanics against local hidden-variable theories, rather
than by correlation measures, might come from an ac-
curate determination of the phenomenological quantity
ε′ by whatever means obtained. The complex parameter
ε′ characterizes direct CP -violation in the neutral kaon
system and is predicted to be non-zero by the Standard
Model.[16-18]

Indeed, as discussed below, inequalities of Clauser-
Horne type [19, 20] can be derived for hidden-variable the-
ories that reproduce neutral kaon’s phenomenology and
comply with the hypothesis of stochastic independence of
neutral kaon decays. Then, a specific Bell’s inequality is
showed to be violated if ε′ is measured to be non-zero.

A preliminary result on the determination of the phe-
nomenological quantity Re(ε′/ε) has been recently an-
nounced by two experimental collaborations [21, 22] al-
lowing an estimate of the parameter ε′. We shall explicitly
show that, as a byproduct, these measurements represent
the first experimental evidence of a violation of Bell’s lo-
cality occurring in a subnuclear system, without requiring
correlation measures. We will make clear that the viola-
tion comes about because of an internal inconsistency of
a large class of hidden-variable theories that pretend to
reproduce standard kaon phenomenology in the presence
of direct CP -violation.

2 The neutral kaon system

The standard effective description of neutral kaons makes
use of a two dimensional Hilbert space.[16] A useful or-
thonormal basis in this space is given by the CP -
eigenstates

|K1〉 =
|K0〉 + |K0〉√

2
, |K2〉 =

|K0〉 − |K0〉√
2

, (2.1)

where |K0〉, |K0〉 are the strangeness eigenstates. The
time-evolution and decay of neutral kaons is described by
the nonhermitian phenomenological hamiltonian Heff =
M −iΓ/2, with M and Γ the positive 2×2 mass and decay
matrices. A kaon, initially in a state |K〉, will evolve up to
its proper-time τ into a state |K(τ)〉 = exp(−iτHeff)|K〉.

As CP -invariance is not preserved in kaon time-
evolution, the eigenstates of the hamiltonian Heff are two
non-orthogonal admixtures of the states (2.1), which, in
the |K1〉, |K2〉 basis, are given by

|KS〉 =
1√

1 + |εS |2
(

1
εS

)
,

|KL〉 =
1√

1 + |εL|2
(

εL

1

)
. (2.2)

The states |KS〉, |KL〉 correspond to the eigenvalues λS,L

≡ mS,L − iγS,L/2, where mS , mL and γS , γL are the
masses, and widths of the physical short and long-lived
kaons. The complex quantities εS,L signal indirect CP and
CPT -violating effects.

The decay-rate, or probability per unit time that a
kaon in a generic state |K〉 decays into a final state f can
be written as

Γ (K → f) =
∫

dΩf |A(K → f)|2 , (2.3)
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where A(K → f) is the Lorentz-invariant amplitude which
depends in general on the so-called Dalitz variables, while
dΩf represents the corresponding phase-space measure.

Because of the linearity of the decay-amplitudes with
respect to the kaon states, the effective description allows
one to associate the decay into a specific final state f

with a 2×2 positive operator Õf . In fact, using the decay
amplitudes of the CP -eigenstates |K1〉 and |K2〉 into f ,
one constructs the matrix

Õf ≡ |A(K1 → f)|2
(

1 rf

r∗
f |rf |2

)
, rf =

A(K2 → f)
A(K1 → f)

.

(2.4)
The parameter rf can be expressed in terms of εS,L and
the corresponding ratio of amplitudes for the decays of the
states |KL〉, |KS〉 into f ; these quantities are accessible to
the experiment.

In this way, the decay-rate (2.3) can equivalently be
written as the following mean-value with respect to the
kaon state |K〉:

Γ (K → f) =
∫

dΩf 〈K|Õf |K〉 = 〈K|
(∫

dΩf Õf

)
|K〉 .

(2.5)
Since Õf has zero determinant, it is proportional to a
projector

Of =
1

1 + |rf |2
(

1 rf

r∗
f |rf |2

)
= |Kf 〉〈Kf | , (2.6)

where

|Kf 〉 =
1√

1 + |rf |2
(

1
r∗
f

)
. (2.7)

Further, to any specific final state f one associates an
orthonormal basis in the effective Hilbert space. In fact,
O⊥

f ≡ 1 − Of projects onto the state |K⊥
f 〉,

O⊥
f = |K⊥

f 〉〈K⊥
f | , |K⊥

f 〉 =
1√

1 + |rf |2|

(
rf

−1

)
,

(2.8)
such that 〈Kf |K⊥

f 〉 = 0; note that |K⊥
f 〉 cannot decay into

f :

A(K⊥
f → f) ∝ rfA(K1 → f) − A(K2 → f) = 0 . (2.9)

Since kaons are spinless, in the case of two-body final
states f the decay amplitudes are constant. Therefore,

Γ (K → f) = 〈K|Õf |K〉 Ωf ≡ |〈K|Kf 〉|2 Tr(Õf ) Ωf ,
(2.10)

where Ωf is just a constant phase-space contribution. Let
us point out that the probability |〈K|Kf 〉|2 that a kaon in
the state |K〉 be in the state |Kf 〉 is directly related to a
decay-rate. It can actually be measured; indeed, the fac-
tor Tr (Õf ) in (2.10) can be extracted from the following
branching ratios [10]

BR(KS,L → f) = Tr (Õf )
|〈KS,L|Kf 〉|2

γS,L
Ωf , (2.11)

where the scalar products 〈KS,L|Kf 〉 are fixed by equa-
tions (2.2) and (2.7) in terms of the parameter rf in (2.4).

When the final state f comprises more than two par-
ticles, the decay amplitudes are not constant and depend
on the appropriate Dalitz variables. One can still define
states |Kf 〉, but only for fixed kinematical configurations.
Then, the operator

∫
dΩf Õf is clearly not proportional

to a projector, but rather to a density matrix:

ρf =
∫

dΩf Õf

Tr
[∫

dΩf Õf

] . (2.12)

In such cases, the probability that the kaon state |K〉 be
in the mixture ρf is still proportional to the decay-rate of
|K〉 into f , but the proportionality factor, i.e. the denom-
inator in (2.12), cannot be easily related to measurable
quantities.

In the sequel, we will deal with two-pion, f00 = π0π0,
f+− = π+π−, and semileptonic, f`+ = `+π−ν, final states.
In the basis |K1〉, |K2〉, a convenient parametrization of
the corresponding Õf in terms of phenomenologically mea-
surable parameters can be given (for a discussion and more
details, see [23, 24]). Indeed, following the previous con-
siderations, to the pion final states we associate the pro-
jectors

O+− = |K+−〉〈K+−|
=

1
1 + |r+−|2

(
1 r+−

r∗
+− |r+−|2

)
, (2.13a)

O00 = |K00〉〈K00|
=

1
1 + |r00|2

(
1 r00

r∗
00 |r00|2

)
, (2.13b)

where the small parameters r+− and r00 can be written
as

r+− = ε − εL + ε′ , r00 = ε − εL − 2ε′ ; (2.14)

the two phenomenological quantities ε and ε′ signal CP
and CPT -violating effects that occur directly in the de-
cay amplitudes and are used to parametrize the following
constant amplitude ratios [16-18]

η+− =
A(KL → π+π−)
A(KS → π+π−)

= ε + ε′ ,

η00 =
A(KL → π0π0)
A(KS → π0π0)

= ε − 2ε′ . (2.15)

Concerning the semileptonic decays, three body final
states, the corresponding projector operators O` depend
in general on suitable Dalitz variables. Nevertheless, one
usually takes the approximation of neglecting the lepton
mass;[16] in this case, one can show that O` is constant
so that a state |K`〉 can be defined and the corresponding
probabilities |〈K|K`〉|2 can be related to measurable quan-
tities, as explained before. However, this approximation is
not necessary if one assumes, as we will do, the validity
of the socalled ∆S = ∆Q rule;[16, 17] in this case only
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K0 and not K0 can decay into `+π−ν. This allows us to
associate to the final state `+π−ν the constant projector

O`+ = |K`+〉〈K`+ | ≡ |K0〉〈K0| =
1
2

(
1 1
1 1

)
. (2.16)

In the following, we deal with the probabilities
〈K(τ)|O+−|K(τ)〉, 〈K(τ)|O00|K(τ)〉 and 〈K(τ)|O`+ |
K(τ)〉, that a kaon evolved up to time τ into a state |K(τ)〉
be in one of the states |K+−〉, |K00〉 and |K`+〉; as shown
above, all these probabilities are expressed in terms of ex-
perimentally accessible quantities.

A typical situation in which neutral kaon physics can
be studied is offered by the socalled φ-factories. In such
setups, φ-mesons are copiously produced, which mainly
decay into couple of kaons. In the case of neutral kaons,
because of symmetry reasons, the resulting state is entan-
gled in a way that resembles the singlet state of two spin
1/2 particles:

|Ψ〉 = N
(
|KS〉 ⊗ |KL〉 − |KL〉 ⊗ |KS〉

)
, (2.17)

where N is a normalization constant. The two kaons fly
apart with opposite momentum (in the φ rest frame) and
evolve each up to its proper time τi, i = 1, 2, according to
the effective hamiltonian Heff :

|Ψ〉 7→ |Ψ(τ1, τ2)〉 ≡
(
e−iHeffτ1 ⊗ e−iHeffτ2

)
|Ψ〉 . (2.18)

Let us observe that, setting τ1 = τ2 = τ , the entanglement
is preserved by the time-evolution:

|Ψ(τ)〉 ≡
(
e−iHτ ⊗ e−iHτ

)
|Ψ〉 = e−i∆mτ−γτ |Ψ〉 , (2.19)

where ∆m = mL − mS and γ = (γS + γL)/2 mediates
the exponential damping due to the system instability.
The similarity with the standard Einstein-Poldosky-Rosen
setting is apparent; this allows various tests of quantum
mechanics to be performed.[1, 3-9, 25]

3 Bell-like inequalities with neutral kaons

Using (2.18) or (2.19), one computes probabilities related
to double-decays and therefore tests of local hidden-
variable theories in the neutral kaon context can be dis-
cussed.

Because of (2.19), the probabilities Pτ (Ka, Kb) that
one kaon be in a state |Ka〉 and the other in a state |Kb〉,
at proper time τ , are given by

Pτ (Ka, Kb) = 〈Ψ(τ)|
(
Oa ⊗ Ob

)
|Ψ(τ)〉

= e−2γτ |N |2
∣∣∣〈KS |Ka〉 〈KL|Kb〉

− 〈KS |Kb〉 〈KL|Ka〉
∣∣∣2 . (3.1)

In the above expression, the projectors operators Oa,b are
connected with the kaon states |Ka,b〉 as in (2.6); in a sim-
ilar way one can construct the probabilities Pτ (Ka, K⊥

b ),

Pτ (K⊥
a , Kb) and Pτ (K⊥

a , K⊥
b ), by using also the orthog-

onal states |K⊥
a,b〉 and the corresponding projectors O⊥

a,b

(cfr. (2.8)). Furthermore, by replacing Oa (or Ob) in (3.1)
with a unit matrix, one obtains the probability Pτ (∗, Kb)
(respectively, Pτ (Ka, ∗)) that one of the two kaons decays
into the final state fb (fa), the other being undecayed;
then, Pτ (∗, Kb) = 〈Ψ(τ)|1 ⊗ Ob|Ψ(τ)〉 = Pτ (Kc, Kb) +
Pτ (K⊥

c , Kb), for any kaon state |Kc〉.
At each proper time τ , one has a situation which is

formally analogous to the one appearing in standard for-
mulations of Bell’s inequalities using spins.[1, 2, 19, 20]
That is, |Ψ(τ)〉 plays the role of the singlet state of two
spin 1/2 particles emitted by a source and the projectors,
Oa,b, O⊥

a,b, are the analog of spin-polarization operators.
The main difference with respect to the standard Einstein-
Poldosky-Rosen context is that, while in the spin case the
directions along which to measure the spin-polarization
are freely chosen by the experimenter, in the neutral kaon
case only “polarization” directions that identify specific
decay channels are actually allowed. Nevertheless, this re-
striction does not result in a serious limitation; indeed, as
explained in the Appendix, using regeneration techniques,
many final “polarizations” states may be experimentally
reachable.

In any hidden-variable extension of quantum mechan-
ics, the description embodied in the state |Ψ(τ)〉 in (2.19)
is completed with additional parameters λ assigning prob-
abilities pτ

λ(Ka, Kb) to the double-decays into final states
fa and fb. Also, λ fixes the probabilities pτ

λ(Ka, ∗) and
pτ

λ(∗, Kb) associated with single decays at time τ of one
of the two kaons, the other one being undecayed. The ad-
ditional parameters generally constitute a statistical en-
semble described by a suitable distribution ρ(λ) such that∫

dλ ρ(λ) = 1. Then, one asks that the quantum mechan-
ical probabilities (3.1) be reproduced by integration over
λ; for instance:

Pτ (Ka, Kb) =
∫

dλ ρ(λ) pτ
λ(Ka, Kb) , (3.2)

while similar relations hold for Pτ (∗, Kb) and Pτ (Ka, ∗).
As a consequence, because of the singlet-like character of
|Ψ(τ)〉, in any hidden-variable theory the condition
Pτ (Ka, Ka) = 0 should also be satisfied.

Following standard arguments, one also assumes that
the probabilities pτ

λ(Ka, Kb) fulfill the following Bell’s lo-
cality request

pτ
λ(Ka, Kb) = pτ

λ(Ka, ∗) pτ
λ(∗, Kb) . (3.3)

At any fixed proper time τ , equality (3.3) amounts to stan-
dard Bell’s locality.[1, 2, 19, 20] In terms of spins, it means
that space-like separated polarization measurements can-
not influence each other so that the two events have inde-
pendent statistics. In the case of neutral kaons, due to ex-
plicit time-dependence and instability, one might give up
the factorization property in (3.3) without the need of su-
perluminal transmission of information at the level of the
additional parameters. It is sufficient to imagine hidden-
variable theories that predetermine the statistics of future
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decay events at the moment of the φ-meson decay. In the
following we shall not consider such theories, but rather
assume that kaon decays are local and stochastically inde-
pendent events, whence (3.3). This assumption can be put
to experimental test using regeneration techniques; there-
fore, hidden-variable theories violating it turn out to be
quite unnatural (see the discussion in the Appendix).

Consequences of the assumption (3.3) can be derived
using standard techniques;[19] in particular, introducing
three different final decay states fa, fb and fc, associated
to the kaon states |Ka〉, |Kb〉 and |Kc〉, one can prove that
the following inequality must hold:[15]∣∣∣Pτ (Ka, Kb) − Pτ (Ka, Kc)

∣∣∣ ≤ Pτ (Kc, Kb) . (3.4)

At any fixed proper time τ , the derivation of (3.4) follows
the one in [26] for the time-independent case. However,
the same class of inequalities can be deduced from the
larger class of Bell’s like inequalities which has been ob-
tained in [10] via an argument which essentially adapts
the derivation of Wigner, Belinfante and Holt (see [20],
Sect. 3.7).

Let us consider for a moment the standard situation
based on photon-polarization measures, where time plays
no role. Despite its simplicity, when confronting with ac-
tual experiments involving coincidence countings, it is not
inequality (3.4) which is tested. Due to lack of control of
the number of (photon) pairs produced that actually im-
pinge on the detectors, one is generally forced to use more
general inequalities, that take into account all losses and
nonidealities of the experimental apparatus.[19, 27]

The situation is different in the neutral kaon context;
there, one can actually use an inequality like (3.4) with-
out further assumptions. Indeed, tests of an inequality
of the form (3.4) can be performed by measuring the
phenomenological parameter ε′ in (2.14), (2.15) and not
directly the probabilities appearing in (3.4). Indeed, by
choosing Ka = K`+ , Kb = K00 and Kc = K+−, an expan-
sion to leading orders in CP and CPT -violating param-
eters allows us to express (3.4) in terms of the difference
r+− − r00, or equivalently, using (2.14), in terms of the
constant ε′. Then, the inequality to be fulfilled by any
local hidden-variable theory accounting for neutral kaon
phenomenology and satisfying equality (3.3) reads:∣∣Re(ε′)

∣∣ ≤ 3 |ε′|2 . (3.5)

Typically, CP -violations in decay processes are ignored
for sake of simplicity in almost all discussions of Bell’s in-
equalities concerning neutral kaons (for an exception see
[14]). This means r+− = r00 = 0 and in such a case (3.5)
reduces to a trivial identity. Indeed, setting r+− = r00 = 0,
the projectors in (2.13) both coincide with the projec-
tor onto the kaon state |K1〉, the decay of |K2〉 into a
two-pion final state being forbidden. With these simpli-
fying assumptions, there is an identification of the kaon
states with definite strangeness or CP -quantum numbers
via their decay products. However, in this way, one of
the polarization-like direction would be lost. Instead, be-
sides the strangeness eigenstates |K0〉, |K0〉, and the CP -
eigenstates |K1〉, |K2〉, a third orthonormal basis of kaon

states |K̃S〉, |K̃L〉 is needed to make the typical Bell’s ar-
gument run. In [10], kaon regeneration methods have been
proposed to supply it. The idea of using slabs of regen-
erating materials in asymmetric φ-factories has been put
forward in [12] and reconsidered for other purposes in [13].
In the approach of [15] there is no need to consider regen-
eration as a tool to provide a triple of polarization-like
directions Ka, Kb and Kc. Moreover, it is the very fact
that small CP -violating effects are not neglected which
allows for a connection between direct CP -violations and
violations of Bell’s locality.

The parameter ε′ is accessible to experiments and any
experimental determination of it is in principle able to
disprove (3.5) and thus (3.4). In the next paragraph we
consider the results of the KTeV and the NA48 Collab-
orations which used uncorrelated kaons.[21, 22] However,
the presence and role of ε′ could in principle be tested via
measuring correlations, that is by determining probabili-
ties of joint events as those appearing in (3.4). In fact, as
already explained, when the kaon states |Ka,b〉 are asso-
ciated to actually occurring decays, then the probabilities
Pτ (Ka, Kb) in (3.1) are not only formally well-defined, but
also measurable quantities.

Finally, let us point out that a violation of (3.5) does
not provide a test of the theoretical framework in which
the parameter ε′ can be estimated.[16-18] It only says that
any local hidden-variable theory accounting for stochastic
independence of kaon decays and reproducing kaon phe-
nomenology and thus the right value of ε′ must, at the
same time, fulfill inequality (3.4). Therefore, that very
same theory cannot be compatible with a value of ε′ which
violates (3.5). However, as any test, also the one based on
the inequality (3.5) is significant only when giving a neg-
ative result, saying that an inequality of the form (3.4)
is violated. Only in this case, one is able to experimen-
tally exclude a large set of local deterministic extensions of
quantum mechanics. If the experimental data had turned
out to be compatible with a vanishing value for ε′ (re-
sult predicted by the so-called superweak phenomenologi-
cal model [28]), then, an inequality of the form (3.4) would
have simply been unsuited to exclude the hidden-variable
theories considered in this paper.

4 Experimental results

While the phenomenological parameter ε is very well
known and of the order 10−3, [29] the parameter ε′ has
only recently been determined with sufficient accuracy.
With a fixed-target setup that uses uncorrelated kaons,
the KTeV and NA48 Collaborations have measured the
double ratio of decay rates in (2.15)

|η+−|2
|η00|2 ' 1 + 6Re

(
ε′

ε

)
. (4.1)

Their results are Re (ε′/ε) = (2.80 ± 0.41) × 10−3,[21]
and Re (ε′/ε) = (1.85 ± 0.73) × 10−3,[22] which are in
rough agreement with the theoretical predictions.[18] The
Standard Model further predicts the phase ϕ′ of ε′ to
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be very close to the phase ϕ of ε.[17] Assuming then
Re (ε′/ε) = |ε′/ε|, these experimental determinations al-
low us to check inequality (3.5), that can be rewritten as

R ≡
∣∣∣∣ε′

ε

∣∣∣∣
(

cos ϕ

|ε| − 3
∣∣∣∣ε′

ε

∣∣∣∣
)

≤ 0 . (4.2)

Using the most recent determination for ε and the two
previously quoted experimental results, one finds

RKTeV = 0.89 ± 0.13 , (4.3a)
RNA48 = 0.59 ± 0.23 . (4.3b)

The inequality (3.5) is therefore violated by a few standard
deviations. The accuracy of the determination of Re(ε′/ε)
by the two collaborations will be further improved when
all the experimental data are elaborated (the figures pre-
viously quoted refer to the study of only about 20% (in
the case of KTeV) and 15% (for NA48) of the collected
data). Correspondingly, the test on the violation of the in-
equality (3.5) will also improve; accuracy of about twenty
standard deviations can easily be expected. In this way,
the test of Bell’s locality using neutral kaons will turn
out to be at the same level of accuracy of the best tests
performed with photon cascades.[30]

We point out that another kaon experiment, KLOE in
Frascati, is presently collecting data and its results on the
value of ε′/ε will be announced in the near future. This ex-
periment is particularly interesting for our considerations;
it takes place at the Daphne φ-factory and therefore uses
correlated kaons. Thanks to the machine high luminosity,
both Re(ε′/ε) and Im(ε′/ε) can be measured indepen-
dently,[31] so that the working assumption ϕ′ = ϕ used
above will no longer be necessary. Further, as stressed be-
fore, the KLOE setup can also perform a direct check of
inequality (3.5) by actually measuring the various prob-
abilities involved. However, due to efficiency limitations1
(see the discussion in [10]) the accuracy of such a test is
expected to be much worse than the one using the measure
of ε′.

5 Discussion

As already mentioned, for experimental reasons, the class
of inequalities holding in local hidden-variable theories
that are tested are in general more complicated than
(3.4).[20] One may say that (3.4) stays on the same level
as the inequality originally provided by Bell [1] to sup-
port the incompatibility of local hidden-variable theories
with quantum mechanics. In the case of neutral kaons, a
time-dependent version of it reads:∣∣∣Eτ (Ka, Kb) − Eτ (Ka, Kc)

∣∣∣ ≤ 1 + Eτ (Kc, Kb) , (5.1)

1 For these reasons, the actual determination of ε′ at a φ-
factory involves measures of observables that differ from those
that enter the probabilities in (3.4).

where the correlation functions can be expressed as

Eτ (Ka, Kb) ≡ Pτ (Ka, Kb) + Pτ (K⊥
a , K⊥

b )

− Pτ (K⊥
a , Kb) − Pτ (Ka, K⊥

b ) . (5.2)

When τ = 0, the inequality (5.1) is the standard one and
can be clearly contradicted by quantum mechanics. None
the less, it has not been submitted to any test: due to ac-
tual experimental inefficiencies, one cannot count on per-
fect anticorrelation among pairs in a singlet state as pre-
dicted by quantum mechanics and therefore more compli-
cated inequalities are in general needed.[20] Furthermore,
for τ 6= 0, the factorized common exponential damping
factor exp(−2γτ) in (3.1) compared with the constant 1
on the right hand side of (5.1), confines the possibility of
violations to too short times after the φ-meson decay.2

Like (5.1), inequalities of the type (3.4), if testable
through coincidence counting only, would also be plagued
by all possible kind of apparatus inefficiencies. Neverthe-
less, standard neutral kaon phenomenology allows to pass
from (3.4) to (3.5) and, therefore, to a condition on the
parameter ε′. Since it pertains to the kaon physics, it must
be reproduced by any theory aiming to replace standard
quantum mechanics neutral kaon phenomenology. Then,
the original inequality can be tested by determining ε′: no
further assumptions are necessary and the corresponding
loopholes are avoided.

Let us stress that the violation of (3.5) comes about
because local hidden-variable theories that reproduce neu-
tral kaon phenomenology and account for the stochastic
independence of neutral kaon decays, become self-
contradictory. In fact, they must reproduce a physically
measurable parameter ε′ whose value happens to violate
certain inequalities which must also be satisfied by the
same theories. Therefore, beside its role in showing the di-
rect violation of the CP -symmetry, the determination of
ε′/ε at the same time provides evidence against a whole
class of local completions of quantum mechanics by show-
ing an internal inconsistency of these theories.

Moreover, the result is the first obtained in a subnu-
clear system and without correlation measurements. No-
tice, however, that the inequality (3.4) involves joint kaon
decays and, as discussed, no apriori obstruction exists to
testing it by counting simultaneous decays into two-pion
and semileptonic final states. Nevertheless, these measures
must eventually reproduce the figure of ε′ obtained by any
other experiment and cannot show a confirmation of (3.5).

Obviously, not all local hidden-variable theories can be
excluded by a determination of ε′, but only those for which
the inequality (3.4) can be derived. For this, two require-
ments need to be satisfied: a) the truth of the quantum
mechanical phenomenological description of neutral kaons
and thus the impossibility of observing simultaneous de-
cays of singlet-like entangled kaons into the same final
states; and b) that the underlying local hidden-variable

2 This kind of exponential suppression of violation of Bell’s
inequalities also appears in the analysis of [7-9], where, how-
ever, correlations resulting in having or not having a K0 at
different proper times are used.
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theories do not predetermine ab initio future decay events
which are thus stochastically independent.

We remark that request a) is just the acceptance of
kaon phenomenology (ultimately of the Standard Model)
as a correct description of reality. Instead, request b) apri-
ori eliminates those local hidden-variable theories where
the probabilities of certain decays are fixed at the mo-
ment of the φ-meson decay (models have been proposed
in [3-7]). Concretely, if we abandoned request b) above,
then two-pion and semileptonic decays considered in this
paper might be correlated ab initio and we would not be
allowed to use the factorization (3.3). In the standard sit-
uation, the experimenter circumvents the possibility that
experimental outcomes be predetermined by freely choos-
ing which polarization to measure, without entangled pho-
tons “knowing” it. Instead, in the neutral kaon case this
is not possible and must be excluded apriori.

Clearly, having put constraints on the class of local
hidden-variable theories to be tested, the question is how
large is the class which fulfills them. In other words, one
may ask how restrictive is request b) or how feasible is
a hidden-variable theory which reproduces kaon pheno-
menology and predetermines the statistics of future decay
events. In the Appendix we argue that kaon regeneration
phenomena [10, 12] may be used to put most severe con-
straints on them. Indeed, it is shown that the probabilities
in (3.4) might be measured not by the statistics of double-
decay events at time τ , but rather at later different times
τ + τa and τ + τb after interposition of regenerating mate-
rial in one or both the flight paths of the two kaons. The
time τ can be chosen such that the presence or not of a
slab of regenerating material cannot be known at the mo-
ment of the φ-meson decay. Furthermore, a lot of freedom
is left to the experimenter, since more than one slab of re-
generation material can be inserted across the kaons path.
Such hidden variable theories, where the decay statistics
is preestablished, should also account for all these possible
interactions of neutral kaons with the regenerators: they
clearly turn out to be very had hoc and unviable.

Appendix

Because of their different strangeness quantum number
and their strong interactions with nucleons, the neutral
kaons |K0〉 and |K0〉 acquire different phases while passing
through slabs of materials as copper, lead or carbon.[10]
This leads a long-lived kaon |KL〉 entering the slab to end
up with a (regenerated) short-lived component |KS〉 after
its exit. Their time-evolution in matter is thus different
from the one in vacuum which is described by the hamil-
tonian Heff = M − iΓ/2.

A slab of homogeneous regenerating material can be
described by a regeneration parameter

ρ =
πν

mK

f − f

λS − λL
, (A.1)

where ν is the number of scattering centers per unit vol-
ume, mK the kaon mass, f , f the forward scattering am-

plitudes for |K0〉 and |K0〉 on nucleons and λS,L the eigen-
values of the vacuum effective hamiltonian. The time-
evolution of neutral kaons in matter can be effectively
described by an effective hamiltonian H ′

eff ; in the |K0〉,
|K0〉 basis it reads

H ′
eff = Heff − 2πν

mK

(
f 0
0 f

)
. (A.2)

For slabs of materials of sufficiently small thickness d, the
time-evolution of the Heff -eigenstates |KS,L〉 can be ap-
proximated by [10]

e−iH′
eff∆τ ′ |KS〉 = |KS〉 − ξ |KL〉 (A.3a)

e−iH′
eff∆τ ′ |KL〉 = |KL〉 + ξ |KS〉 , (A.3b)

where
ξ = i

πν

pK
(f − f) d , (A.4)

with pK the kaon momentum in the laboratory frame, and
∆τ ′ is the time spent by the kaons in the material.

Consider now two kaons generated in a φ-meson decay
that evolve in vacuum up to equal proper times τ , when
they enter two slabs of regenerating materials with regen-
eration parameters ρa, ρb. After times ∆τ ′

a and ∆τ ′
b they

exit and evolve in vacuum up to proper times τ+∆τ ′
a+∆τa

and τ + ∆τ ′
b + ∆τb. Let us set τa = ∆τ ′

a + ∆τa and
τb = ∆τ ′

b + ∆τb, then the initial correlated state Ψ in
(2.17) evolves into (compare with (2.18))

|Ψ ′(τ + τa, τ + τb)〉 ≡
(
e−iHeff∆τae−iH′

eff∆τ ′
ae−iHeffτ

)
⊗

(
e−iHeff∆τbe−iH′

eff∆τ ′
be−iHeffτ

)
|Ψ〉 . (A.5)

The probability that the kaon states at proper times τ +τa

and τ + τb be two generic states |Kηa〉 and |Kηb
〉, is given

by (see (3.1)):

P ′
τa,τb

(Kηa , Kηb
)

= |〈Ψ ′(τ + τa, τ + τb)|Oηa

⊗Oηb
|Ψ ′(τ + τa, τ + τb)〉|2

= e−2γτ |N |2
∣∣∣〈Kηa

|W (τa)|KS〉〈Kηb
|W (τb)|KL〉

− 〈Kηa |W (τa)|KL〉〈Kηb
|W (τb)|KS〉

∣∣∣2 , (A.6)

where

W (τa) = e−iHeff∆τa e−iH′
eff∆τ ′

a , (A.7a)

W (τb) = e−iHeff∆τb e−iH′
eff∆τ ′

b . (A.7b)

Expanding the states |KS〉 and |KL〉 in 〈Kηj
|W (τj)|KL,S〉,

j = a, b, above, along orthonormal basis |Kj〉, |K⊥
j 〉 such

that
〈Kηj

|W (τj)|K⊥
j 〉 = 0 , (A.8)

one sees that (A.6) becomes

P ′
τa,τb

(Kηa
, Kηb

) = |〈Kηa
|W (τa)|Ka〉|2 |〈Kηb

|W (τb)|Kb〉|2
×Pτ (Ka, Kb) , (A.9)
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with Pτ (Ka, Kb) as in (3.1). Therefore, at least in princi-
ple, the probabilities appearing in (3.4) can be measured
via (A.9) by freely choosing to insert or not a regeneration
slab along the kaons path, without the kaons “knowing”
it.

The above argument clearly relies on the condition
(A.8). In order to show that this condition is actually im-
plementable, we work in the |K1,2〉 basis, where |Kηj 〉 ∝
(1, η∗

j ) and |K⊥
j 〉 ∝ (rj ,−1) as in (2.7) and (2.8). Then,

neglecting higher powers in the small parameters εS,L and
ξ, all of order 10−3 or smaller, using (A.3), after some al-
gebra equality (A.8) leads to the following expression for
the parameter ξ in (A.4):

ξ=
(rj + εL + ηjrjεS) e(i∆m−∆γ/2)∆τj − (ηj + ηjεS + εL)

e(i∆m−∆γ/2)∆τj + ηjrj
,

(A.10)
where ∆m = mL − mS and ∆γ = γS − γL ' 2∆m.

When |Kj〉 = |K`+〉 as in (2.16), rj = 1 and no choice
of ηj renders the right hand side of (A.10) compatible with
the smallness of ξ. On the other hand, when |Kj〉 equals
|K+−〉 or |K00〉, rj equals r+− or r00 in (2.13); choosing
ηj = r+− or ηj = r00 and neglecting higher orders in the
small parameters, (A.10) further simplifies:

ξ = ε
(
1 − e(1−i)∆m∆τj

)
. (A.11)

Such an equality is implementable by an appropriately
chosen regenerating material.

Thus, there are no apriori obstructions to computing
the joint-probabilities Pτ (Ka, Kb) in (3.4) by using (A.9)
and thus double-decay rates at times τ+τa and τ+τb; only
in the case when one of the kaon states, say |Ka〉, equals
|K`+〉, corresponding to semileptonic final states, regener-
ation techniques fail to provide the link given by equation
(A.9). In these cases, no regenerating slab is inserted and
τa is set to zero. Then, the challenge of hidden-variable
theories to be able to predetermine the joint-probabilities
appearing in (3.4) comes from the fact that we can decide
to obtain the latter by freely choosing to insert or not the
appropriate regenerating slabs. For instance, in the sim-
plest situation described above, there are sixteen avail-
able possibilities: four choices for Pτ (K+−, K00) and two
choices for Pτ (K`+ , K+−) and Pτ (K00, K`+) that involve
semileptonic final states. Furthermore, one is in principle
allowed to insert more than one regenerating slab in the
beam path of either kaons. In this way, a lot of freedom
of choice is left to the experimenter and these hidden-
variable theories must then be able to account for it; they
must be very special indeed.
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